Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
PLoS Pathog ; 19(2): e1011196, 2023 02.
Article in English | MEDLINE | ID: covidwho-2281628

ABSTRACT

The Omicron variant of SARS-CoV-2 is capable of infecting unvaccinated, vaccinated and previously-infected individuals due to its ability to evade neutralization by antibodies. With multiple sub-lineages of Omicron emerging in the last 12 months, there is inadequate information on the quantitative antibody response generated upon natural infection with Omicron variant and whether these antibodies offer cross-protection against other sub-lineages of Omicron variant. In this study, we characterized the growth kinetics of Kappa, Delta and Omicron variants of SARS-CoV-2 in Calu-3 cells. Relatively higher amounts infectious virus titers, cytopathic effect and disruption of epithelial barrier functions was observed with Delta variant whereas infection with Omicron sub-lineages led to a more robust induction of interferon pathway, lower level of virus replication and mild effect on epithelial barrier. The replication kinetics of BA.1, BA.2 and BA.2.75 sub-lineages of the Omicron variant were comparable in cell culture and natural infection in a subset of individuals led to a significant increase in binding and neutralizing antibodies to the Delta variant and all the three sub-lineages of Omicron but the level of neutralizing antibodies were lowest against the BA.2.75 variant. Finally, we show that Cu2+, Zn2+ and Fe2+ salts inhibited in vitro RdRp activity but only Cu2+ and Fe2+ inhibited both the Delta and Omicron variants in cell culture. Thus, our results suggest that high levels of interferons induced upon infection with Omicron variant may counter virus replication and spread. Waning neutralizing antibody titers rendered subjects susceptible to infection by Omicron variants and natural Omicron infection elicits neutralizing antibodies that can cross-react with other sub-lineages of Omicron and other variants of concern.


Subject(s)
COVID-19 , Humans , Broadly Neutralizing Antibodies , Kinetics , SARS-CoV-2/genetics , Antibodies, Neutralizing , Interferons/genetics , Antibodies, Viral
2.
ACS Omega ; 5(51): 33151-33161, 2020 Dec 29.
Article in English | MEDLINE | ID: covidwho-1007704

ABSTRACT

The recent pandemic caused by SARS-CoV-2 has led the world to a standstill, causing a medical and economic crisis worldwide. This crisis has triggered an urgent need to discover a possible treatment strategy against this novel virus using already-approved drugs. The main protease (Mpro) of this virus plays a critical role in cleaving the translated polypeptides that makes it a potential drug target against COVID-19. Taking advantage of the recently discovered three-dimensional structure of Mpro, we screened approved drugs from the Drug Bank to find a possible inhibitor against Mpro using computational methods and further validating them with biochemical studies. The docking and molecular dynamics study revealed that DB04983 (denufosol) showed the best glide docking score, -11.884 kcal/mol, and MM-PBSA binding free energy, -10.96 kcal/mol. Cobicistat, cangrelor (previous computational studies in our lab), and denufosol (current study) were tested for the in vitro inhibitory effects on Mpro. The IC50 values of these drugs were ∼6.7 µM, 0.9 mM, and 1.3 mM, respectively, while the values of dissociation constants calculated using surface plasmon resonance were ∼2.1 µM, 0.7 mM, and 1.4 mM, respectively. We found that cobicistat is the most efficient inhibitor of Mpro both in silico and in vitro. In conclusion, cobicistat, which is already an FDA-approved drug being used against HIV, may serve as a good inhibitor against the main protease of SARS-CoV-2 that, in turn, can help in combating COVID-19, and these results can also form the basis for the rational structure-based drug design against COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL